• Visit the USI website
  • Go back to the homepage

Institute for Research in Biomedicine
Istituto di Ricerca in Biomedicina

Via Vincenzo Vela 6 - CH-6500 Bellinzona
Tel. +41 91 820 0300 - Fax +41 91 820 0302 - info [at] irb [dot] usi [dot] ch

Promotion of genetic diversity in meiosis: resolution of recombination intermediates

Research area: Recombination Mechanisms

Group leaders: Petr Cejka

Status: In progress

Promotion of genetic diversity is a key function of sexual reproduction. At the molecular level, this is controlled by the homologous recombination machinery, which exchanges (recombines) DNA fragments between the maternal and paternal genomes. During this process, joint molecules form between the 'mum' and 'dad' chromosomes, leading to intermediates termed double Holliday junctions. These joint molecules are then processed in a way that results in the physical exchange of genetic information between the two recombining chromosomes. This so‐called crossover is an integral and essential part of the meiotic cell division. Results from genetic, cell biological and cytological experiments identified the Mlh1‐Mlh3 heterodimer as part of a protein complex that is required for the generation of crossovers during meiotic homologous recombination. However, the mechanism of this reaction is completely unknown. The aim of our research is to analyze the behavior of the purified recombinant Mlh1­‐Mlh3 complex as well that of its partners in the processing of double Holliday junctions. We want to show how Mlh1‐Mlh3 can cleave these structures into exclusively crossover recombination products, and therefore explain the molecular mechanism underlying the generation of diversity in meiosis.

So far, we successfully expressed and purified the yeast Mlh1-­Mlh3 and human MLH1-MLH3 recombinant proteins into near homogeneity. We could show that the recombinant MutLγ is indeed a nuclease that nicks double­‐stranded DNA in the presence of manganese, similarly to the mismatch repair specific MutLα nuclease. MutLγ binds DNA with a high affinity, and shows a marked preference for Holliday junctions, in agreement with its anticipated activity in their processing. Specific DNA recognition has never been observed with any other eukaryotic MutL homologue. Mismatch repair specific MutLα shows no binding preference to mismatched DNA. MutLγ thus represents a new paradigm for the function of the eukaryotic MutL protein family. Unfortunately, to date, we have not seen any activity on joint molecule intermediates (such as Holliday junctions) in the presence of physiological manganese metal cofactor. This will likely require interplay of Mlh1-Mlh3 with other cellular factors (such as Exo1, Msh4-Msh5, etc.), and is the subject of vigorous research in the laboratory at present.